Очерком поверхности называется. Проекции поверхностей. Задание поверхности на чертеже. Алгоритм построения очерка поверхности вращения

💖 Нравится? Поделись с друзьями ссылкой

Очерки

При задания для проецировании объекта с криволинейными гранями, помимо определения множество точек, ребер и граней объекта проецирования, необходимо определить множество очерков для его криволинейных граней.

Очерки криволинейной поверхности представляют собой линии на этой криволинейной поверхности, разделяющие эту поверхность на части, которые не видимы, и части, которые видны на плоскости проекции. В данном случае речь идет о проекции только рассматриваемой криволинейной поверхности и не учитывается возможное затенение этой поверхности другими поверхностями переднего плана.

Части, на которые очерки разбивается криволинейную поверхность, называются отсеками .

Положение очерков криволинейных граней определяется параметрами проекции, поэтому очерки должны определяться после того, как совершен переход в видовую систему координат.

Определение очерка криволинейной поверхности, в общем случае, представляет собой сравнительно сложную задачу. Поэтому, как правило, заданную криволинейную поверхность аппроксимируют с помощью одной из типовых криволинейных поверхностей, к числу которых относятся:

Цилиндрическая поверхность;

Сферическая поверхность;

Коническая поверхность.

Рассмотрим нахождение очерков для этих видов криволинейных поверхностей.

Нахождение очерков сферической поверхности иллюстрируется Рис. 6.6‑7.

На рисунке приняты следующие обозначения:

О - центр сферы;

О п – проекция центра сферы;

ГМ – главный меридиан заданной сферы;

Пл1- плоскость, проходящая через центр сферы, параллельная плоскости проекции;

X в , Y в , Z в – координатные оси видовой системы координат;

X п , Y п – координатные оси на плоскости проекции.

Чтобы найти очерк на поверхности сферы необходимо через центр сферы провести плоскость (пл1 на Рис. 6.6‑7), параллельную плоскости проекции. Линия пересечения этой поверхности и сферы, имеющая форму окружности, называется главным меридианом (ГМ) сферической поверхности. Этот главный меридиан и является искомым очерком.

Проекцией этого очерка будет являться окружность с тем же радиусом. Центром этой окружности является проекция центр исходной сферы на плоскость проекции (О п на Рис. 6.7‑1).


Рис. 6.7 1

Для определения очерка цилиндрической поверхности , через ось заданного цилиндра o 1 o 2 (Рис. 6.7‑2) проводится плоскость Пл1, перпендикулярная плоскости проекции. Далее через ось цилиндра проводится плоскость Пл2, перпендикулярная плоскости Пл1. Ее пересечения с цилиндрической поверхности образуют две прямые линии o ч 1 оч 2 и o ч 3 o ч 4 , которые являются очерками цилиндрической поверхности. Проекцией этих очерков являются прямые линии o ч 1п оч 2п и o ч 3п o ч 4п , показанные на Рис. 6.7‑2 .


Построение очерков конической поверхности иллюстрируется Рис. 6.7‑3.

На приведенном рисунке приняты следующие обозначения:

O - вершина конуса;

OO 1 - ось конуса;

X в , Y в , Z в – видовая система координат;

ПП – плоскость проекции;

X п , Y п , –система координат плоскости проекции;

Лп – линии проекции;

O 1 - центр сферы, вписанной в конус;

O 2 – окружность-касательная вписанной сферы, имеющая центр в точке O 1 , и исходной конической поверхности;

O ч 1 , O ч 1 – точки, лежащие на очерках конической поверхности;

O ч 1п , O ч 1п - точки, через которые проходят линии, соответствующие проекциям очерков конической поверхности.



Коническая поверхность имеет два очерка в виде прямых линий. Очевидно, что эти линии проходят через вершин конуса - точку О. Для однозначного задания очерка поэтому необходимо найти по одной точке для каждого очерка.

Для построения очерков конической поверхности выполняют следующие действия.

В заданную коническую поверхность вписывается сфера (например, с центром в точке О 1) и определяется касательная этой сферы с конической поверхностью. В рассматриваемом на рисунке случае линия касания будет иметь форму окружности с центром в точке О 2 , лежащей на оси конуса.

Очевидно, что из всех точек сферической поверхности точками, принадлежащими очеркам, могут быть только точки, принадлежащие окружности-касательной. С другой стороны, эти точки обязательно должна находиться на окружности главного меридиана вписанной сферы.

Поэтому искомыми точками будет точки пересечения окружности главного меридиана вписанной сферы и окружности-касательной. Эти точки можно определить как точки пересечения окружности-касательной и плоскости, проходящей через центр вписанной сферы O 1 , параллельной плоскости проекции. Такими точками на приведенном рисунке являются O ч 1 и O ч 2 .

Для построения проекций очерков достаточно найти точки O ч 1п и O ч 2п , являющихся проекциями найденных точек O ч 1 и O ч 2 на плоскость проекции , и, используя эти точки и точку O п проекции вершины конуса, построить две прямые линии, соответствующие проекциям очерков заданной конической поверхности (см. Рис. 6.7‑3).

Рис. 3.15

Поверхности вращения имеют весьма широкое применение во всех областях техники. Поверхностью вращения называют поверхность, получающуюся от вращения некоторой образующей линии 1 вокруг неподвижной прямойi - оси вращения поверхности (рис.3.15). На чертеже поверхность вращения задается своим очерком. Очерком поверхности называются линии, которые ограничивают области ее проекций. При вращении каждая точка образующей описывает окружность, плоскость которой перпендикулярна оси. Соответственно, линия пересечения поверхности вращения плоскостью, перпендикулярной оси, является окружностью. Такие окружности называют параллелями (рис. 3.15). Параллель наибольшего радиуса называют экватором, наименьшего - горлом. Плоскость, проходящую через ось поверхности вращения, называют меридиональной, линию ее пересечения с поверхностью вращения - меридианом. Меридиан, лежащий в плоскости, параллельной плоскости проекций, называют главным меридианом. В практике выполнения чертежей наиболее часто встречаются следующие поверхности вращения: цилиндрическая, коническая, сферическая, торовая.

Рис. 3.16

Цилиндрическую поверхность вращения . В качестве направляющейа следует взять окружность, а в качестве прямойb - осьi (рис.3.16). Тогда получим, что образующаяl , параллельная осиi , вращается вокруг последней. Если ось вращения перпендикулярна горизонтальной плоскости проекций, то наП 1 цилиндрическая поверхность проецируется в окружность, а наП 3 - в прямоугольник. Главным меридианом цилиндрической поверхности являются две параллельные прямые.

Рис 3.17

Коническую поверхность вращения получим, вращая прямолинейную образующуюl вокруг осиi . При этом образующаяl пересекает осьi в точкеS , называемой вершиной конуса (рис.3.17). Главным меридианом конической поверхности являются две пересекающиеся прямые. Если в качестве образующей взять отрезок прямой, а ось конуса перпендикулярнойП 1 , то наП 1 коническая поверхность проецируется в круг, а наП 2 - в треугольник.

Сферическая поверхность образуется за счет вращения окружности вокруг оси, проходящей через центр окружности и лежащей в ее плоскости (рис.3.18). Экватор и меридианы сферической поверхности являются равными между собой окружностями. Поэтому при ортогональном проецировании на любую плоскость сферическая поверхность проецируется в круги.

Рис. 3.18 При вращении окружности вокруг оси, лежащей в плоскости этой окружности, но не проходящей через ее центр, образуется поверхность, называемая торовой (рис.3.19).

Рис. 3.19

11.ПОЗИЦИОННЫЕ ЗАДАЧИ.ПРИНАДЛЕЖНОСТЬ ТОЧКИ, ЛИНИИ ПОВЕРХНОСТИ.ТЕОРЕМА МОНЖА. Под позиционными подразумеваются задачи, решение которых позволяет получить ответ о принадлежности элемента (точки) или подмножества (линии) множеству (поверхности). К позиционным относятся также задачи на определение общих элементов, принадлежащих различным геометрическим фигурам. Первая группа задач может быть объединена под общим названием задачи на принадлежность. К ним, в частности, относятся задачи на определение:1) принадлежности точки линии;2) принадлежности точки поверхности;3) принадлежности линии поверхности.Ко второй группе относятся задачи на пересечение. Эта группа содержит также три типа задач:1) на пересечение линии с линией;2) на пересечение поверхности с поверхностью;3) на пересечение линии с поверхностью.Принадлежность точки поверхности . Основное положение при решении задач для этого варианта принадлежности следующее: точка принадлежит поверхности, если она принадлежит какой-либо линии этой поверхности . В этом случае линии надо выбирать наиболее простыми, чтобы легче было построить проекции такой линии, затем использовать то обстоятельство, что проекции точки, лежащие на поверхности, должны принадлежать одноименным проекциям линии этой поверхности. Пример решение этой задачи показан на рисунке . Здесь есть два пути решения, поскольку можно провести две простейших линии, принадлежащих конической поверхности. В первом случае - проводится прямая линия - образующая конической поверхности S1 так, чтобы она проходила через какую-либо заданную проекцию точки С. Тем самым предполагаем, что точка С принадлежит образующей S1 конической поверхности, а следовательно - самой конической поверхности. В этом случае одноименные проекции точки С должны лежать на соответствующих проекциях этой образующей.Другая простейшая линия - окружность с диаметром 1-2 (радиус этой окружности - отсчитывается от оси конуса до очерковой образующей). Этот факт известен еще из школьного курса геометрии: при пересечении кругового конуса плоскостью, параллельной его основанию, или перпендикулярной к его оси, в сечении будет получаться окружность. Второй способ решения позволяет найти недостающую проекцию точки С, заданной своей фронтальной проекцией, принадлежащей поверхности конуса и совпадающей на чертеже с осью вращения конуса, без построения третьей проекции. Всегда следует иметь в виду, видима или не видима точка, лежащая на поверхности конуса (в случае, если она не видна, соответствующая проекция точки будет заключена в скобки). Очевидно, что в нашей задаче точка С принадлежит поверхности, поскольку проекции точки принадлежат одноимённым проекциям линий, использованных для решения как при первом, так и при втором способе решения.Принадлежность линии поверхности. Основное положение:линия принадлежит поверхности, если все точки линии принадлежат заданной поверхности . Это означает, что в данном случае принадлежности должна быть несколько раз решена задача о принадлежности точки поверхности.Торема Монжа :если две поверхности второго порядка описаны около третьей или вписаны в неё, то линия их пересечения распадается на две кривые второго порядка, плоскости которых проходят через прямую, соединяющую точки пересечения окружности касания.

12.СЕЧЕНИЯ КОНУСА ВРАЩЕНИЯ ПРОЕЦИРУЮЩИМИ ПЛОСКОСТЯМИ . При пересечении поверхностей тел проецирующими плоскостями, одна проекция сечения совпадает с проекцией проецирующей плоскости. Конус может иметь в сечении пять различных фигур.Треугольник - если секущая плоскость пересекает конус через вершину по двум образующим.Окружность - если плоскость пересекает конус параллельно основанию (перпендикулярно оси).Эллипс - если плоскость пересекает все образующие под некоторым углом.Параболу - если плоскость параллельна одной из образующих конуса.Гиперболу - если плоскость параллельна оси или двум образующим конуса.Сечение поверхности плоскостью представляет собой плоскую фигуру, ограниченную замкнутой линией, все точки которой принадлежат как секущей плоскости, так и поверхности. При пересечении плоскостью многогранника в сечении получается многоугольник с вершинами, расположенными на ребрах многогранника.Пример . Построить проекции линии пересечения L поверхности прямого кругового конуса ω плоскостью β.Решение . В сечении получается парабола, вершина которой спроецируется в точку А (А′, А′′). Точки A, D, E линии пересечения являются экстремальными. На рис. построение искомой линии пересечения осуществлено с помощью горизонтальных плоскостей уровня αi, которые пересекают поверхность конуса ω по параллелям рi , а плоскость β - по отрезкам фронтально проецирующих прямых. Линия пересечения L полностью видима на плоскостях.

13.Соосные поверхности. Метод концентрических сфер.

При построении линии пересечения поверхностей особенности пересечения соосных поверхностей вращения позволяют в качестве вспомогательных поверхностей-посредников использовать сферы, соосные с данными поверхностями. К соосным поверхностям вращения относятся поверхности, имеющие общую ось вращения. На рис. 134 изображены соосные цилиндр и сфера (рис. 134, а), соосные конус и сфера (рис. 134, б) и соосные цилиндр и конус (рис. 134, в)

Соосные поверхности вращения всегда пересекаются по окружностям, плоскости которых перпендикулярны оси вращения. Этих общих для обеих поверхностей окружностей столько, сколько существует точек пересечения очерковых линий поверхностей. Поверхности на рис. 134 пересекаются по окружностям, создаваемым точками 1 и 2 пересечения их главных меридианов. Вспомогательная сфера-посредник пересекает каждую из заданных поверхностей по окружности, в пересечении которых получаются точки, принадлежащие и другой поверхности, а значит, и линии пересечения. Если оси поверхностей пересекаются, то вспомогательные сферы проводят из одного центра-точки пересечения осей. Линию пересечения поверхностей в этом случае строят способом вспомогательных концентрических сфер. При построении линии пересечения поверхностей для использования способа вспомогательных концентрических сфер необходимо выполнение следующих условий:1) пересечение поверхностей вращения;2) оси поверхностей - пересекающиеся прямые - параллельны одной из плоскостей проекций, т. е. имеется общая плоскость симметрии;3) нельзя использовать способ вспомогательных секущих плоскостей, так как они не дают графически простых линий на поверхностях. Обычно способ вспомогательных сфер используется в сочетании со способом вспомогательных секущих плоскостей. На рис. 135 построена линия пересечения двух конических поверхностей вращения с пересекающимися во фронтальной плоскости уровня Ф (Ф1) осями вращения. Значит, главные меридианы этих поверхностей пересекаются и дают в своем пересечении точки видимости линии пересечения относительно плоскости П2 или самую высокую А и самую низкую В точки. В пересечении горизонтального меридиана h и параллели h", лежащих в одной вспомогательной секущей плоскости Г(Г2), определены точки видимости С и D линии пересечения относительно плоскости П1. Использовать вспомогательные секущие плоскости для построения дополнительных точек линии пересечения нецелесообразно, так как плоскости, параллельные Ф, будут пересекать обе поверхности по гиперболам, а плоскости, параллельные Г, будут давать в пересечении поверхностей окружности и гиперболы. Вспомогательные горизонтально или фронтально проецирующие плоскости, проведенные через вершину одной из поверхностей, будут пересекать их по образующим и эллипсам. В данном примере выполнены условия, позволяющие применение вспомогательных сфер для построения точек линии пересечения. Оси поверхностей вращения пересекаются в точке О (О1; О2), которая является центром вспомогательных сфер, радиус сферы изменяется в пределах Rmin < R < Rmах- Радиус максимальной сферы определяется расстоянием от центра О наиболее удаленной точки В (Rmax = О2В2), а радиус минимальной сферы определяется как радиус сферы, касающейся одной поверхности (по окружности h2) и пересекающей другую (по окружности h3).Плоскости этих окружностей перпендикулярны осям вращения поверхностей. В пересечении этих окружностей получаем точки Е и F, принадлежащие линии пересечения поверхностей:

h22 ^ h32 = E2(F2); Е2Е1 || А2А1; Е2Е1 ^ h21 =E1; F2F ^ h1 = F1 Промежуточная сфера радиуса R пересекает поверхности по окружностям h4 и h5, в пересечении которых находятся точки Ми N:h42 ^ h52 = M2(N2); M2M1 || А2А1, М2М1 ^ h41 = М1; N2N1 ^ h41 = N1 Соединяя одноименные проекции построенных точек с учетом их видимости, получаем проекции линии пересечения поверхностей.

№14. построение линии пересечения поверхностей, если хотя бы одна из них проецирующая. Характерные точки линии пересечения.

Прежде чем приступить к построению линии пересечения поверхностей, необходимо внимательно изучить условие задачи, т.е. какие поверхности пересекаются. Если одна из поверхностей является проецирующей, то решение задачи упрощается, т.к. на одной из проекций линия пересечения совпадает с проекцией поверхности. И задача сводится к нахождению второй проецирующей линии. При решении задачи следует отметить в первую очередь «характерные» точки или «особые». Это:

· Точки на крайних образующих

· Точки, делящие линию на видимую и невидимую часть

· Верхние и нижние точки и др. Далее следует разумно выбрать способ, каким будем пользоваться при построении линии пересечения поверхностей. Мы будем пользоваться двумя способами: 1. вспомогательных секущих плоскостей. 2. вспомогательных секущих сфер. К проецирующим поверхностям относятся: 1) цилиндр, если его ось перпендикулярна плоскости проекций; 2) призма, если ребра призмы перпендикулярны плоскости проекций. Проецирующая поверхность проецируется в линию на плоскость проекций. Все точки и линии, принадлежащие боковой поверхности проецирующего цилиндра или проецирующей призме проецируются в линию на ту плоскость, которой ось цилиндра или ребро призмы перпендикулярно. Линия пересечения поверхностей принадлежит обеим поверхностям одновременно и, если одна из этих поверхностей проецирующая, то для построения линии пересечения можно использовать следующее правило: если одна из пересекающихся поверхностей проецирующая, то одна проекция линии пересечения есть на чертеже в готовом виде и совпадает с проекцией проецирующей поверхности (окружность, в которую проецируется цилиндр или многоугольник, в который проецируется призма). Вторая проекция линии пересечения строится исходя из условия принадлежности точек этой линии другой не проецирующей поверхности.

Рассмотренные особенности характерных точек позволяют легко проверить правильность построения линии пересечения поверхностей, если она построена по произвольно выбранным точкам. В данном случае десяти точек достаточно для проведения плавных проекций линии пересечения. При необходимости может быть построено любое количество промежуточных точек. Построенные точки соединяют плавной линией с учетом особенностей их положения и видимости. Сформулируем общее правило построения линии пересечения поверхностей: выбирают вид вспомогательных поверхностей; строят линии пересечения вспомогательных поверхностей с заданными поверхностями; находят точки пересечения построенных линий и соединяют их между собой. Вспомогательные секущие плоскости выбираем таким образом, чтобы в пересечении с заданными поверхностями получались геометрически простые линии (прямые или окружности). Выбираем вспомогательные секущие плоскости. Чаще всего, в качестве вспомогательных секущих плоскостей выбирают проецирующие плоскости, в частности, плоскости уровня. При этом необходимо учитывать линии пересечения, получаемые на поверхности, в результате пресечения поверхности плоскостью. Так конус является наиболее сложной поверхностью по числу получаемых на нем линий. Только плоскости, проходящие через вершину конуса или перпендикулярные оси конуса, пересекают его соответственно по прямой линии и окружности (геометрически простейшие линии). Плоскость, проходящая параллельно одной образующей пересекает его по параболе, плоскость параллельная оси конуса пересекает его по гиперболе, а плоскость, пересекающая все образующие и наклонные к оси конуса, пересекает его по эллипсу. На сфере, при пересечении ее плоскостью, всегда получается окружность, а если пересекать ее плоскостью уровня, то эта окружность проецируется на плоскости проекции соответственно в прямую линию и окружность. Итак, в качестве вспомогательных плоскостей выбираем горизонтальные плоскости уровня, которые пересекают и конус, и сферу по окружностям (простейшие линии).Некоторые особые случаи пересечения поверхностей В некоторых случаях расположение, форма или соотношения размеров криволинейных поверхностей таковы, что для изображения линии их пресечения никаких сложных построений не требуется. К ним относятся пересечение цилиндров с параллельными образующими, конусов с общей вершиной, соосных поверхностей вращения, поверхностей вращения, описанных вокруг одной сферы.

Основные понятия и определения

Поверхность как объект инженерного исследования может быть задана следующими основными способами: а) уравнением; б) каркасом; в) определи гелем; г) очерком.

Составлением уравнений поверхностей занимается аналитическая геометрия; она рассматривает поверхность как множество точек, координаты которых удовлетворяют уравнению вида F (х,у, z) = 0.

В начертательной геометрии поверхность на чертеже задается каркасом, определителем, очерком.

При каркасном способе поверхность задастся совокупностью некоторого количества линий, принадлежащих поверхности. В качестве линий, образующих каркас, как правило, берут семейство линий, получающихся при пересечении поверхности рядом параллельных плоскостей. Этот способ используется при проектировании кузовов автомобилей, в самолето - и судостроении, в топофафии и т. п.

Поверхность, образованная движущейся в пространстве линией, на чертеже может быть задана определителем поверхности.

Определителем поверхности называется совокупность геометрических фигур и связей между ними. позволяющих однозначно образовать поверхность в пространстве и задать ее на чертеже.

Способ образования поверхности движущейся в просфанстве линией называют кинематическим.

Линию, образующую при своем движении в пространстве данную поверхность называют образующей (производящей).

Образующая при своем движении может изменять свою форму или оставаться неизменной. Закон перемещения образующей можно, в частности, задать неподвижными линиями, на которые при своем движении опирается образующая. Эти линии называются направляющими.

На чертеже при задании поверхности ее определителем строятся проекции направляющих линий, указывается, как находятся проекции образующей линии. Построив ряд положений образующей линии, получим каркас поверхности. Пример образования поверхности кинематическим способом показан на рис. 96.

В качестве образующей а этой поверхности взята плоская кривая. Закон перемещения образующей задан двумя направляющими m и n и плоскостью а . Образующая а скользит по направляющим, все время оставаясь параллельной плоскости a .

Различают геометрическую и алгоритмическую часть определителя поверхности. Определитель имеет следующую форму записи Ф(Г) [ А ] , где Ф - обозначение поверхности; (Г) -геометрическая часть определителя, в ней перечисляются все геометрические фигуры, участвующие в образовании поверхности и задании ее на чертеже; [А ] - алгоритмическая часть определителя - в ней записывается алгоритм формирования поверхности.

Определитель поверхности выявляется путем анализа способов образования поверхности или се основных свойств. В общем случае одна и та же поверхность может быть образована несколькими способами, поэтому может иметь несколько определителей. Обычно из всех способов образования поверхности выбирают простейший. Например, боковая поверхность прямого кругового цилиндра может быть образована четырьмя способами (рис. 97):

а) как след, оставляемый в пространстве прямой а при ее вращении вокруг оси m (рис. 97,а).

Определитель поверхности - Ф (а,m) [ A 1 ] :

б) как след, оставляемый в пространстве кривой линией b при ее вращении вокруг оси m (рис. 97,6).

Определитель поверхности - Ф (b,m) [ A 2 ] ;

в) как след, оставляемый в пространстве окружностью с при поступательном перемещении ее центра О вдоль оси m . при этом плоскость окружности все время остается перпендикулярной к этой оси (рис. 97,в).

Определитель поверхности - Ф (а,m) [ A 3 ] :

г) как огибающую всех положений сферической поверхности р постоянного радиуса, центр которой перемещается по оси m (рис.97,г).

Определитель поверхности -Ф (p,m) [ A 4 ].

Наиболее простым из рассматриваемых будет определитель Ф (а,m) [ A 1 ] .

Задание поверхности на чертеже каркасом или определителем не всегда обеспечивает наглядность ее изображения. В некоторых случаях поверхность целесообразнее задавать ее очерком.

Очерком поверхности называется проекция проецирующей цилиндрической поверхности, огибающей заданную поверхность.

По известному уравнению поверхности или се определителю, или очерку всегда можно построить каркас поверхности.

Многообразие поверхностей требует их систематизации. Для поверхностей, образованных кинематическим способом в основу систематизации положен их определитель.

В зависимости от вида образующей поверхности разделяются на два класса:

класс 1 - поверхности нелинейчатые (образующая - кривая линия);

класс 2 - поверхности линейчатые (образующая - прямая линия).

Поверхности нелинейчатые

Поверхности нелинейчатые подразделяют на поверхности с образующей переменного вида (изменяющей свою форму в процессе движения) и на поверхности с образующей постоянного вида.

Нелинейчатые поверхности с образующей переменного вида

К нелинейчатым поверхностям с образующей переменного вида относятся:

1. Поверхность общего вида . Такая поверхность образуется перемещением образующей переменного вида а по криволинейной направляющей т (рис. 98).

2. Каналовая поверхность . Эта поверхность образуется движением плоской замкнутой линии, плоскость которой определенным образом ориентирована в пространстве (рис. 99).

Площадь, ограниченная образующей, монотонно изменяется в процессе ее движения но направляющей. Например, каналовую поверхность имеет переходный участок, соединяющий два трубопровода разной формы.

3. Циклическая поверхность - частный случай каналовой поверхности, когда образующая - окружность, радиус которой монотонно изменяется (рис. 100).

Примером циклической поверхности может быть корпус духового музыкального инструмента.

Нелинейчатые поверхности с образующей постоянного вида

К нелинейчатым поверхностям с образующей постоянного вида относятся:

1. Поверхность общего вида . Такая поверхность может быть образована движением произвольной кривой линии а по направляющей m (рис. 101).

2. Трубчатая поверхность . Образующей трубчатой поверхности является окружность постоянного радиуса. Плоскость окружности при ее движении остается перпендикулярной к направляющей (рис. 102).

Примером трубчатой поверхности может быть поверхность проволоки круглого сечения.

Поверхности линейчатые

Линейчатые поверхности образуются движением прямой (образующей) по заданному закону. В зависимости от закона движения образующей получаем различные линейчатые поверхности.


Линейчатые поверхности с тремя направляющими

К линейчатым поверхностям с тремя направляющими относятся:

1. Поверхность косого цилиндра . Такая поверхность может быть образована движением прямолинейной образующей по трем криволинейным направляющим (рис. 103).

2. Поверхность дважды косого цилиндроида . Эта поверхность образуется в том случае, когда две направляющие кривые, а третья -прямая линия (рис. 104).

3. Поверхность дважды косого коноида получается в том случае, когда одна из направляющих - кривая, а две других - прямые линии (рис. 105).

4. Поверхность однополостного гиперболоида образуется в случае, когда направляющие - три скрещивающиеся прямые, параллельные одной плоскости. Пример. Найти недостающие проекции точек А" и В" принадлежащих поверхности однополостного гиперболоида (рис. 106).

P e ш е н и е. Для определения недостающей проекции точки, воспользуемся признаком принадлежности ее поверхности: точка принадлежит поверхности; если она принадлежит какой-либо линии этой поверхности.

Для данной линейчатой поверхности при построении проекций образующей сначала задается ее горизонтальная проекция, а затем находится фронтальная. Поэтому через известную горизонтальную проекцию точки A" проводим проекцию образующей а" 2 , определяем ее фронтальную проекцию а 2 " , на которой по линии связи найдем искомую фронтальную проекцию точки A" .

Для определения недостающей горизонтальной проекции точки В" выполним следующие построения:

1. Построим ряд образующих заданной поверхности a 1 ,a 2 ,a 3 ,a 4 .

2. На фронтальной плоскости проекций через известную проекцию точки В" проведем проекцию вспомогательной линии b" принадлежащей заданной поверхности и пересекающей образующие.

3. По известным фронтальным проекциям точек пересечения проекции линии b" с образующими а 1 ", а 2 ", а 3 ", а 4 " найдем горизонтальные проекции этих точек. Соединив их плавной линией, построим горизонтальную проекцию вспомогательной линии b" на которой по линии связи найдем искомую проекцию точки В" .

К линейчатым поверхностям с тремя направляющими относятся, например, поверхности гребных винтов судов и пропеллеров самолетов. В архитектуре и строительстве они используются при возведении крытых зданий стадионов, рынков, вокзалов.

Линейчатые поверхности с двумя направляющими и плоскостью параллелизма (поверхности Каталана)

К линейчатым поверхностями с двумя направляющими плоскостью параллелизма относятся:

1. Поверхность прямого цилиндроида . Такая поверхность может быть образована движением прямолинейной образующей по двум направляющим m и n в том случае, когда они - гладкие кривые линии, причем одна из них - плоская кривая, плоскость которой β перпендикулярна плоскости параллелизма a (n ⊂ β, β ⊥ a) (рис. 107).

2. Поверхность прямого коноида . Эта поверхность получается в том случае, когда одна направляющая - кривая линия, а вторая -прямая, причем она перпендикулярна плоскости параллелизма

a(n ⊥ a) (рис. 108). Поверхность прямого коноида используется в гидротехническом строительстве для формирования поверхности устоев мостовых опор.

3. . Такая поверхность образуется в том случае, когда две направляющие - скрещивающие прямые (рис. 109). Поверхность косой плоскости применяется в инженерно - строительной практике для формирования поверхностей откосов, насыпей, железнодорожных и автомобильных дорог, набережных, гидротехнических сооружений в местах сопряжения имеющих различные углы наклона.

Линейчатые поверхности с одной направляющей (торсы)

Торсы являются развертываемыми поверхностями - они могут быть совмещены с плоскостью без складок и разрывов. К торсовым поверхностям относятся:

1. Поверхность с ребром возврата . Эта поверхность образуется движением прямолинейной образующей, во всех своих положениях касательной к пространственной кривой, называемой ребром возврата.

2. Цилиндрическая поверхность . Данная поверхность образуется движением прямолинейной образующей, скользящей по кривой направляющей и остающейся параллельной своему исходному состоянию (рис.110).

3. Коническая поверхность . Эта поверхность образуется движением прямолинейной образующей, скользящей по кривой направляющей и проходящей во всех своих положениях через одну и ту же неподвижную точку S (рис. 111).

Поверхности вращения

Поверхностью вращения называют поверхность, получаемую вращением какой-либо образующей линии вокруг неподвижной прямой - оси вращения поверхности .

Плоскости, перпендикулярные оси вращения, пересекают поверхность по окружностям - параллелям. Наименьшую параллель называют горлом, наибольшую - экватором.

Па рис. 112 показана поверхность вращения. Здесь образующей является плоская кривая ABCD , ось вращения i расположена в одной плоскости с этой кривой.

Линии, по которым плоскости, проходящие через ось вращения, пересекают поверхность называют меридианами. Каждый меридиан разделяется на две симметричные относительно оси вращения линии, называемые полумеридианами. Меридиан, расположенный в плоскости, параллельной фронтальной плоскости проекций, называют главным меридианом.

Основные свойства поверхности вращения:

1. Отрезок меридиана между двумя точками поверхности есть кратчайшее расстояние между этими точками.

2. Все меридианы равны между собой.

3. Каждая из параллелей поверхности вращения пересекает меридианы под прямым углом.

4. Любая из нормалей к поверхности вращения пересекает ось вращения поверхности.

Поверхности вращения на чертеже удобно задавать очерками, проекциями ее характерных линий и точек. Фронтальным очерком поверхности вращения является фронтальная проекция главного меридиана, а горизонтальным - горизонтальная проекция экватора.

Рассмотрим основные виды поверхностей вращения:

1. Цилиндр вращения . Эта поверхность может быть получена вращением прямой, параллельной оси вращения i (рис. 113).

2. Конус вращения . Поверхность конуса вращения может быть получена вращением прямой, пересекающей ось вращения i (рис. 114).

3. Сфера . Образующая сферы - окружность, центр которой О находится на оси вращения i (рис. 115).

4. Top. Образующая тора - окружность или ее дуга. Ось вращения i лежит в плоскости этой окружности, но не проходит через ее центр (рис.116, 117).

Различают открытый тор (круговое кольцо) (рис. 116,117,а), закрытый (рис. 117, б), самопересекающийся (рис. 117, в, г).

Образующей для открытого (рис. 116,117,а) и закрытого тора (рис. 117,6) служит окружность, для самопересекающегося (рис. 117, в, г) -дуга окружности.

5. Параболоид вращения . Такая поверхность образуется при вращении параболы вокруг ее оси (рис. 118). Поверхность параболоида используется в параболических антеннах и зеркалах рефлекторов.

6. Гиперболоид вращения . Эта поверхность образуется при вращении гиперболы вокруг оси. Различают двуполостный и однополостный гиперболоид вращения . Для двуполостного гиперболоида вращения осью вращения служит действительная ось гиперболы (рис. 119),

для однополостного гиперболоида (рис. 120) - ее мнимая ось. Однополостный гиперболоид вращения также может быть образован вращением прямой линии в случае, если образующая и ось вращения -скрещивающиеся прямые.

Положение точки на поверхности вращения определяется с помощью окружности, которая проходит на поверхности вращения через эту точку (см. рис.114-116). В случае линейчатых поверхностей вращения (цилиндр, конус) возможно использование для этой цели прямолинейных образующих (см. рис. 113,114).

Винтовые линейчатые поверхности

Винтовой линейчатой поверхностью называется поверхность. образуемая винтовым перемещением прямой .

Винтовое перемещение образующей характеризуется вращением ее вокруг оси i и одновременным поступательным движением, параллельным этой оси (рис. 121). Закон перемещения образующей определяется видом винтовой линии (ее направлением, диаметром и шагом) и характером перемещения образующей по направляющей.

На практике чаще всего встречаются винтовые линейчатые поверхности с постоянным шагом направляющей линии. Такие винтовые поверхности называются геликоидами.

Если угол наклона образующей к оси вращения равен 90°, то геликоид называется прямым, если этот угол произвольный, отличный от 0 и 90°, то геликоид называется косым (наклонным). Прямые и косые геликоиды могут быть открытыми и закрытыми. У открытого геликоида образующая и ось вращения - скрещивающиеся прямые, у закрытого пересекающиеся прямые. На рис. 121 построен каркас прямого закрытого геликоида.

Винтовые поверхности широко используются в технике. Винты, пружины, сверла, шнеки для перемещения сыпучих материалов, винтовые лестницы - все они имеют винтовые поверхности.

Понятие поверхности

ПОВЕРХНОСТИ

В начертательной геометрии поверхности рассматриваются как множество последовательных положений некоторой линии, перемещающейся в пространстве по определенному закону. Такой способ образования поверхности называется кинематическим.

Линия (кривая или прямая) движется в пространстве по определенному закону и создает поверхность. Она называется образующей. В процессе образования поверхности она может оставаться неизменной или менять свою форму. Закон перемещения образующей задается в виде совокупности линий и указаний о характере перемещения образующей. Эти линии называются направляющими.

Кроме кинематического способа, поверхность может быть задана

· аналитически, т. е. описана математическим выражением;

· каркасным способом, который используется при задании сложных поверхностей; каркас поверхности представляет собой упорядоченное множество точек или линий, принадлежащих поверхности.

Чтобы задать поверхность на комплексном чертеже, достаточно иметь на нем такие элементы поверхности, которые позволяют построить каждую ее точку. Совокупность этих элементов называется определителем поверхности.

Определитель поверхности состоит из двух частей:

· геометрической части, включающей постоянные геометрические элементы (точки, линии), которые участвуют в образовании поверхности;

· алгоритмической части, задающей закон движения образующей, характер изменения ее формы.

В символическом виде определитель поверхности F можно записать в виде: F(Г)[A], где Г – геометрическая часть определителя, А – алгоритмическая.

Чтобы у поверхности выделить определитель, следует исходить из кинематического способа ее образования. Но так как многие одинаковые поверхности могут быть получены различными путями, то они будут иметь различные определители. Ниже будут рассмотрены наиболее распространенные поверхности в соответствии с классификационными признаками, приятыми в курсе начертательной геометрии.

Чтобы задать поверхность на комплексном чертеже достаточно указать проекции не всего множества точек и линий, принадлежащих поверхности, а только геометрических фигур, входящих в состав ее определителя. Такой способ задания поверхности позволяет построить проекции любой ее точки. Задание поверхности проекциями ее определителя не обеспечивает наглядность, что затрудняет чтение чертежа. Для повышения наглядности, если это возможно, на чертеже указывают очерковые линии (очерки) поверхности.

Когда какая-нибудь поверхность Wпроецируется параллельно на плоскость проекций S, то проецирующие прямые, касающиеся поверхности W, образуют цилиндрическую поверхность (рис. 11.1). Эти проецирующиеся прямые касаются поверхности Wв точках, образующих некоторую линию m,котораяназывается контурной линией.



Проекция контурной линии m на плоскость S – m / ,называется очерком поверхности. Очерк поверхности отделяет проекцию поверхности от остальной части плоскости проекций.

Контурную линию поверхности используют при определении видимости точек относительно плоскости проекций. Так, на рис. 11.1 проекции точек поверхности W, расположенные левее контура m, на плоскости S будут видимыми. Проекции остальных точек поверхности будут невидимыми.

Каждая поверхность одной из своих сторон может быть направлена к наблюдателю и тогда эта сторона будет видимой. В противном случае сторона поверхности будет не видна из точки наблюдения. Может случиться так, что только часть стороны поверхности будет видимой. В этом случае на поверхности можно построить линию, разделяющую видимую и невидимую чисти поверхности. Линией очерка будем называть линию на поверхности, отделяющую видимую часть поверхности или грани от невидимой ее части.

Рис. 9.5.1. Проекции линий очерка поверхности

Рис. 9.5.2. Проекции сетки полигонов и линий очерка

На рис. 9.5.1 приведены линии очерка поверхности. На рис. 9.5.2 показаны линии очерка совместно с сеткой поверхности.

При переходе через линию очерка нормаль поверхности меняет направление по отношению к линии взгляда. В точках линии очерка нормаль поверхности ортогональна линии взгляда. В общем случае у поверхности линий очерка может быть несколько. Каждая линия очерка является пространственной кривой. Она или замкнута, или оканчивается на краях поверхности. Для разных направлений взгляда существует своя совокупность линий очерка, поэтому при повороте поверхности линии очерка необходимо строить заново.

Параллельные проекции.

Для некоторых поверхностей, например, сферы, цилиндра, конуса, линии очерка строятся достаточно просто. Рассмотрим общий случай построения линий очерка поверхности.

Пусть требуется найти линии очерка поверхности, описываемой радиус-вектором Каждая точка линии очерка для параллельной проекции на плоскость (9.2.1) должна удовлетворять уравнению

где - нормаль к поверхности, для которой строится линия очерка. Для поверхности, описываемой радиус-вектором нормаль также является функцией параметров и . Скалярное уравнение (9.5.1) содержит два искомых параметра u, v. Если задать один из параметров, то другой можно найти из уравнения (9.5.1), т. е. один из параметров является функцией от другого. Для равноправия параметров их можно представить в виде функций некоторого общего параметра

Результатом решения уравнения (9.5.1) является двухмерная линия

на поверхности Эта линия и есть линия очерка поверхности.

Мы построим линию очерка по упорядоченной совокупности точек, удовлетворяющих уравнению (9.5.1). Точками мы называем пару параметров поверхности, являющихся координатами двухмерных точек на параметрической плоскости. Имея отдельные точки линии очерка, расположенные в порядке их следования и на определенном расстоянии друг от друга, всегда можно найти любую другую точку линии. Например, для нахождения точки, лежащей между двумя заданными соседними точками линии очерка, проведем плоскость перпендикулярно соединяющему соседние точки отрезку и найдем общую точку для поверхности и плоскости, решив три скалярных уравнения пересечения совместно с уравнением (9.5.1). Положение плоскости на отрезке можно задать параметром линии. По крайним точкам отрезка определяется нулевое приближение для искомой точки. Таким образом, совокупность отдельных двухмерных точек линии очерка поверхности служит как бы нулевым приближением этой линии, по которому одним из численных методов всегда можно найти точное положение точки. Алгоритм построения линий очерка поверхности можно разбить на два этапа.

На первом этапе найдем хотя бы по одной точке на каждой линии очерка. Для этого, шагая по поверхности и исследуя знак скалярного произведения в соседних точках, найдем пары точек поверхности, в которых меняет знак. Взяв в качестве нулевого приближения средние значения параметров этих точек, одним из численных методов найдем параметры точки линии очерка. Пусть, например, при переходе из точки в близкую к ней точку меняет знак. Тогда, положив с помощью итерационного процесса метода Ньютона

или итерационного процесса

найдем параметры одной из точек линии очерка. Производные нормали определяются формулами Вейнгартена (1.7.26), (1.7.28). Таким способом получим набор точек линий очерка. Точки из полученного на первом этапе набора никак не связаны друг с другом и могут принадлежать различным линиям очерка. Важно только, чтобы от каждой линии очерка в наборе присутствовала хотя бы одна точка.

На втором этапе берем любую точку из имеющегося набора и, двигаясь от нее с некоторым шагом сначала в одну сторону потом в другую, находим точку за точкой искомую совокупность точек линии очерка. Направление движения дает вектор

где - частные производные нормали - частные производные радиус-вектора поверхности по параметрам .

Знак перед слагаемым совпадает со знаком скалярного произведения Шаг движения вычислим в соответствии с кривизнами поверхностей в текущей точке по формуле (9.4.7) или по формуле (9.4.8). Если

то по формуле (9.4.7) дадим приращение параметру и и по формуле (9.5.4) найдем соответствующий ему параметр v поверхности. В противном случае по формуле (9.4.8) дадим приращение параметру и и по формуле (9.5.5) найдем соответствующий ему параметр и поверхности. Движение по кривой закончим, когда дойдем до края одной из поверхностей или когда линия замкнется (новая точка окажется на расстоянии текущего шага от точки старта).

В процессе движения будем проверять, не лежат ли вблизи пути следования точки из набора, полученного на первом этапе. Для этого по пути следования будем вычислять расстояние от текущей точки кривой очерка до каждой точки из набора, полученного на первом этапе. Если вычисленное расстояние до какой-либо точки набора соизмеримо с текущим шагом движения, то эту точку удалим из набора как более ненужную. Так получим совокупность отдельных точек одной линии очерка. При этом в наборе точек, полученном на первом этапе, не будет содержаться ни одной точки данной линии. Если в наборе останутся еще точки, то данная поверхность имеет, по крайней мере, еще одну линию очерка.

Рис. 9.5.3. Линии очерка тела

Рис. 9.5.4. Тело вращения

Совокупность ее точек найдем, взяв любую точку из набора и повторив второй этап построения. Построение линий закончим, когда в наборе не останется ни одной точки. Описанным способом построим линии очерка всех граней модели.

Линии очерка граней являются линиями очерка их поверхностей. Линия очерка тела будет видимой, если она не закрыта гранью, лежащей ближе к точке наблюдения. На рис. 9.5.3 приведена линия очерка тела вращения, показанного на рис. 9.5.4. Проекция линии очерка может иметь изломы и точки возврата, но сама линия очерка является гладкой.

Точки излома у проекции возникают там, где касательная линия очерка коллинеарна вектору

Для построения проекции линии очерка будем строить ее полигон, проекцию которого и возьмем в качестве проекции линии очерка.

Центральные проекции.

Линии очерка в центральных проекциях удовлетворяют уравнению

(9.5.7)

где - нормаль поверхности - радиус-вектор точки наблюдения. Линия очерка для центральной проекции отличается от линии очерка для параллельной проекции, хотя алгоритмы их построения аналогичны. Вместо постоянного вектора в (9.5.7) присутствует вектор , направление которого зависит от проецируемой точки. Линия очерка для центральной проекции также представляет собой некоторую кривую на поверхности, описываемую зависимостями (9.5.3), и является пространственной кривой. Эта линия должна быть спроецирована на плоскость по правилам построения центральной проекции пространственной линии.

На рис. 9.5.5 приведена параллельная проекция линий очерка тора, а на рис. 9.5.6 для сравнения приведена центральная проекция линий очерка тора. Как можно видеть, эти проекции отличаются.

Рис. 9.5.5. Параллельная проекция линий очерка тора

Рис. 9.5.6. Центральная проекция линий очерка тора

Алгоритм построения линий очерка для центральной проекции поверхности, описываемой радиус-вектором отличается от алгоритма построения линий очерка для параллельной проекции этой поверхности тем, что на первом этапе будем искать точки поверхности, в которых меняет знак скалярное произведение . Для определения этих точек вместо формул (9.5.4) и (9.5.5) следует использовать формулы

и формулы

соответственно. В остальном алгоритм построения линий очерка для центральной проекции поверхности не отличается от алгоритма построения линий очерка для параллельной проекции.


Рассказать друзьям