Приращение функции y 1 x. Производная функции. Подробная теория с примерами. Производная логарифмической функции

💖 Нравится? Поделись с друзьями ссылкой

Определение 1

Если для каждой пары $(x,y)$ значений двух независимых переменных из некоторой области ставится в соответствие определенное значение $z$, то говорят, что $z$ является функцией двух переменных $(x,y)$. Обозначение: $z=f(x,y)$.

В отношении функции $z=f(x,y)$ рассмотрим понятия общего (полного) и частного приращений функции.

Пусть дана функция $z=f(x,y)$двух независимых переменных $(x,y)$.

Замечание 1

Так как переменные $(x,y)$ являются независимыми, то одна из них может изменяться, а другая при этом сохранять постоянное значение.

Дадим переменной $x$ приращение $\Delta x$, при этом сохраним значение переменной $y$ неизменным.

Тогда функция $z=f(x,y)$ получит приращение, которое будет называться частным приращением функции $z=f(x,y)$ по переменной $x$. Обозначение:

Аналогично дадим переменной $y$ приращение $\Delta y$, при этом сохраним значение переменной $x$ неизменным.

Тогда функция $z=f(x,y)$ получит приращение, которое будет называться частным приращением функции $z=f(x,y)$ по переменной $y$. Обозначение:

Если же аргументу $x$ дать приращение $\Delta x$, а аргументу $y$ - приращение $\Delta y$, то получается полное приращение заданной функции $z=f(x,y)$. Обозначение:

Таким образом, имеем:

    $\Delta _{x} z=f(x+\Delta x,y)-f(x,y)$ - частное приращение функции $z=f(x,y)$ по $x$;

    $\Delta _{y} z=f(x,y+\Delta y)-f(x,y)$ - частное приращение функции $z=f(x,y)$ по $y$;

    $\Delta z=f(x+\Delta x,y+\Delta y)-f(x,y)$ - полное приращение функции $z=f(x,y)$.

Пример 1

Решение:

$\Delta _{x} z=x+\Delta x+y$ - частное приращение функции $z=f(x,y)$ по $x$;

$\Delta _{y} z=x+y+\Delta y$ - частное приращение функции $z=f(x,y)$ по $y$.

$\Delta z=x+\Delta x+y+\Delta y$ - полное приращение функции $z=f(x,y)$.

Пример 2

Вычислить частные и полное приращение функции $z=xy$ в точке $(1;2)$ при $\Delta x=0,1;\, \, \Delta y=0,1$.

Решение:

По определению частного приращения найдем:

$\Delta _{x} z=(x+\Delta x)\cdot y$ - частное приращение функции $z=f(x,y)$ по $x$

$\Delta _{y} z=x\cdot (y+\Delta y)$ - частное приращение функции $z=f(x,y)$ по $y$;

По определению полного приращения найдем:

$\Delta z=(x+\Delta x)\cdot (y+\Delta y)$ - полное приращение функции $z=f(x,y)$.

Следовательно,

\[\Delta _{x} z=(1+0,1)\cdot 2=2,2\] \[\Delta _{y} z=1\cdot (2+0,1)=2,1\] \[\Delta z=(1+0,1)\cdot (2+0,1)=1,1\cdot 2,1=2,31.\]

Замечание 2

Полное приращение заданной функции $z=f(x,y)$ не равно сумме ее частных приращений $\Delta _{x} z$ и $\Delta _{y} z$. Математическая запись: $\Delta z\ne \Delta _{x} z+\Delta _{y} z$.

Пример 3

Проверить утверждение замечания для функции

Решение:

$\Delta _{x} z=x+\Delta x+y$; $\Delta _{y} z=x+y+\Delta y$; $\Delta z=x+\Delta x+y+\Delta y$ (получены в примере 1)

Найдем сумму частных приращений заданной функции $z=f(x,y)$

\[\Delta _{x} z+\Delta _{y} z=x+\Delta x+y+(x+y+\Delta y)=2\cdot (x+y)+\Delta x+\Delta y.\]

\[\Delta _{x} z+\Delta _{y} z\ne \Delta z.\]

Определение 2

Если для каждой тройки $(x,y,z)$ значений трех независимых переменных из некоторой области ставится в соответствие определенное значение $w$, то говорят, что $w$ является функцией трех переменных $(x,y,z)$ в данной области.

Обозначение: $w=f(x,y,z)$.

Определение 3

Если для каждой совокупности $(x,y,z,...,t)$ значений независимых переменных из некоторой области ставится в соответствие определенное значение $w$, то говорят, что $w$ является функцией переменных $(x,y,z,...,t)$ в данной области.

Обозначение: $w=f(x,y,z,...,t)$.

Для функции от трех и более переменных, аналогично как для функции двух переменных определяются частные приращения по каждой из переменных:

    $\Delta _{z} w=f(x,y,z+\Delta z)-f(x,y,z)$ - частное приращение функции $w=f(x,y,z,...,t)$ по $z$;

    $\Delta _{t} w=f(x,y,z,...,t+\Delta t)-f(x,y,z,...,t)$ - частное приращение функции $w=f(x,y,z,...,t)$ по $t$.

Пример 4

Записать частные и полное приращение функции

Решение:

По определению частного приращения найдем:

$\Delta _{x} w=((x+\Delta x)+y)\cdot z$ - частное приращение функции $w=f(x,y,z)$ по $x$

$\Delta _{y} w=(x+(y+\Delta y))\cdot z$ - частное приращение функции $w=f(x,y,z)$ по $y$;

$\Delta _{z} w=(x+y)\cdot (z+\Delta z)$ - частное приращение функции $w=f(x,y,z)$ по $z$;

По определению полного приращения найдем:

$\Delta w=((x+\Delta x)+(y+\Delta y))\cdot (z+\Delta z)$ - полное приращение функции $w=f(x,y,z)$.

Пример 5

Вычислить частные и полное приращение функции $w=xyz$ в точке $(1;2;1)$ при $\Delta x=0,1;\, \, \Delta y=0,1;\, \, \Delta z=0,1$.

Решение:

По определению частного приращения найдем:

$\Delta _{x} w=(x+\Delta x)\cdot y\cdot z$ - частное приращение функции $w=f(x,y,z)$ по $x$

$\Delta _{y} w=x\cdot (y+\Delta y)\cdot z$ - частное приращение функции $w=f(x,y,z)$ по $y$;

$\Delta _{z} w=x\cdot y\cdot (z+\Delta z)$ - частное приращение функции $w=f(x,y,z)$ по $z$;

По определению полного приращения найдем:

$\Delta w=(x+\Delta x)\cdot (y+\Delta y)\cdot (z+\Delta z)$ - полное приращение функции $w=f(x,y,z)$.

Следовательно,

\[\Delta _{x} w=(1+0,1)\cdot 2\cdot 1=2,2\] \[\Delta _{y} w=1\cdot (2+0,1)\cdot 1=2,1\] \[\Delta _{y} w=1\cdot 2\cdot (1+0,1)=2,2\] \[\Delta z=(1+0,1)\cdot (2+0,1)\cdot (1+0,1)=1,1\cdot 2,1\cdot 1,1=2,541.\]

С геометрической точки зрения полное приращение функции $z=f(x,y)$ (по определению $\Delta z=f(x+\Delta x,y+\Delta y)-f(x,y)$) равно приращению аппликаты графика функции $z=f(x,y)$ при переходе от точки $M(x,y)$ к точке $M_{1} (x+\Delta x,y+\Delta y)$ (рис. 1).

Рисунок 1.

Запомнить очень легко.

Ну и не будем далеко ходить, сразу же рассмотрим обратную функцию. Какая функция является обратной для показательной функции? Логарифм:

В нашем случае основанием служит число:

Такой логарифм (то есть логарифм с основанием) называется «натуральным», и для него используем особое обозначение: вместо пишем.

Чему равен? Конечно же, .

Производная от натурального логарифма тоже очень простая:

Примеры:

  1. Найди производную функции.
  2. Чему равна производная функции?

Ответы: Экспонента и натуральный логарифм - функции уникально простые с точки зрения производной. Показательные и логарифмические функции с любым другим основанием будут иметь другую производную, которую мы с тобой разберем позже, после того как пройдем правила дифференцирования.

Правила дифференцирования

Правила чего? Опять новый термин, опять?!...

Дифференцирование - это процесс нахождения производной.

Только и всего. А как еще назвать этот процесс одним словом? Не производнование же... Дифференциалом математики называют то самое приращение функции при. Происходит этот термин от латинского differentia — разность. Вот.

При выводе всех этих правил будем использовать две функции, например, и. Нам понадобятся также формулы их приращений:

Всего имеется 5 правил.

Константа выносится за знак производной.

Если - какое-то постоянное число (константа), тогда.

Очевидно, это правило работает и для разности: .

Докажем. Пусть, или проще.

Примеры.

Найдите производные функций:

  1. в точке;
  2. в точке;
  3. в точке;
  4. в точке.

Решения:

  1. (производная одинакова во всех точках, так как это линейная функция, помнишь?);

Производная произведения

Здесь все аналогично: введем новую функцию и найдем ее приращение:

Производная:

Примеры:

  1. Найдите производные функций и;
  2. Найдите производную функции в точке.

Решения:

Производная показательной функции

Теперь твоих знаний достаточно, чтобы научиться находить производную любой показательной функции, а не только экспоненты (не забыл еще, что это такое?).

Итак, где - это какое-то число.

Мы уже знаем производную функции, поэтому давай попробуем привести нашу функцию к новому основанию:

Для этого воспользуемся простым правилом: . Тогда:

Ну вот, получилось. Теперь попробуй найти производную, и не забудь, что эта функция - сложная.

Получилось?

Вот, проверь себя:

Формула получилась очень похожая на производную экспоненты: как было, так и осталось, появился только множитель, который является просто числом, но не переменной.

Примеры:
Найди производные функций:

Ответы:

Это просто число, которое невозможно посчитать без калькулятора, то есть никак не записать в более простом виде. Поэтому в ответе его в таком виде и оставляем.

    Заметим, что здесь частное двух функций, поэтому применим соответствующее правило дифференцирования:

    В этом примере произведение двух функций:

Производная логарифмической функции

Здесь аналогично: ты уже знаешь производную от натурального логарифма:

Поэтому, чтобы найти произвольную от логарифма с другим основанием, например, :

Нужно привести этот логарифм к основанию. А как поменять основание логарифма? Надеюсь, ты помнишь эту формулу:

Только теперь вместо будем писать:

В знаменателе получилась просто константа (постоянное число, без переменной). Производная получается очень просто:

Производные показательной и логарифмической функций почти не встречаются в ЕГЭ, но не будет лишним знать их.

Производная сложной функции.

Что такое «сложная функция»? Нет, это не логарифм, и не арктангенс. Данные функции может быть сложны для понимания (хотя, если логарифм тебе кажется сложным, прочти тему «Логарифмы» и все пройдет), но с точки зрения математики слово «сложная» не означает «трудная».

Представь себе маленький конвейер: сидят два человека и проделывают какие-то действия с какими-то предметами. Например, первый заворачивает шоколадку в обертку, а второй обвязывает ее ленточкой. Получается такой составной объект: шоколадка, обернутая и обвязанная ленточкой. Чтобы съесть шоколадку, тебе нужно проделать обратные действия в обратном порядке.

Давай создадим подобный математический конвейер: сперва будем находить косинус числа, а затем полученное число возводить в квадрат. Итак, нам дают число (шоколадка), я нахожу его косинус (обертка), а ты затем возводишь то, что у меня получилось, в квадрат (обвязываешь ленточкой). Что получилось? Функция. Это и есть пример сложной функции: когда для нахождения ее значения мы проделываем первое действие непосредственно с переменной, а потом еще второе действие с тем, что получилось в результате первого.

Другими словами, сложная функция - это функция, аргументом которой является другая функция : .

Для нашего примера, .

Мы вполне можем проделывать те же действия и в обратном порядке: сначала ты возводишь в квадрат, а я затем ищу косинус полученного числа: . Несложно догадаться, что результат будет почти всегда разный. Важная особенность сложных функций: при изменении порядка действий функция меняется.

Второй пример: (то же самое). .

Действие, которое делаем последним будем называть «внешней» функцией , а действие, совершаемое первым - соответственно «внутренней» функцией (это неформальные названия, я их употребляю только для того, чтобы объяснить материал простым языком).

Попробуй определить сам, какая функция является внешней, а какая внутренней:

Ответы: Разделение внутренней и внешней функций очень похоже на замену переменных: например, в функции

  1. Первым будем выполнять какое действие? Сперва посчитаем синус, а только потом возведем в куб. Значит, внутренняя функция, а внешняя.
    А исходная функция является их композицией: .
  2. Внутренняя: ; внешняя: .
    Проверка: .
  3. Внутренняя: ; внешняя: .
    Проверка: .
  4. Внутренняя: ; внешняя: .
    Проверка: .
  5. Внутренняя: ; внешняя: .
    Проверка: .

производим замену переменных и получаем функцию.

Ну что ж, теперь будем извлекать нашу шоколадку - искать производную. Порядок действий всегда обратный: сначала ищем производную внешней функции, затем умножаем результат на производную внутренней функции. Применительно к исходному примеру это выглядит так:

Другой пример:

Итак, сформулируем, наконец, официальное правило:

Алгоритм нахождения производной сложной функции:

Вроде бы всё просто, да?

Проверим на примерах:

Решения:

1) Внутренняя: ;

Внешняя: ;

2) Внутренняя: ;

(только не вздумай теперь сократить на! Из под косинуса ничего не выносится, помнишь?)

3) Внутренняя: ;

Внешняя: ;

Сразу видно, что здесь трёхуровневая сложная функция: ведь - это уже сама по себе сложная функция, а из нее еще извлекаем корень, то есть выполняем третье действие (шоколадку в обертке и с ленточкой кладем в портфель). Но пугаться нет причин: все-равно «распаковывать» эту функцию будем в том же порядке, что и обычно: с конца.

То есть сперва продифференцируем корень, затем косинус, и только потом выражение в скобках. А потом все это перемножим.

В таких случаях удобно пронумеровать действия. То есть, представим, что нам известен. В каком порядке будем совершать действия, чтобы вычислить значение этого выражения? Разберем на примере:

Чем позже совершается действие, тем более «внешней» будет соответствующая функция. Последовательность действий - как и раньше:

Здесь вложенность вообще 4-уровневая. Давай определим порядок действий.

1. Подкоренное выражение. .

2. Корень. .

3. Синус. .

4. Квадрат. .

5. Собираем все в кучу:

ПРОИЗВОДНАЯ. КОРОТКО О ГЛАВНОМ

Производная функции - отношение приращения функции к приращению аргумента при бесконечно малом приращении аргумента:

Базовые производные:

Правила дифференцирования:

Константа выносится за знак производной:

Производная суммы:

Производная произведения:

Производная частного:

Производная сложной функции:

Алгоритм нахождения производной от сложной функции:

  1. Определяем «внутреннюю» функцию, находим ее производную.
  2. Определяем «внешнюю» функцию, находим ее производную.
  3. Умножаем результаты первого и второго пунктов.

по медицинской и биологической физике

ЛЕКЦИЯ №1

ПРОИЗВОДНАЯ И ДИФФЕРЕНЦИАЛ ФУНКЦИИ.

ЧАСТНЫЕ ПРОИЗВОДНЫЕ.

1. Понятие производной, ее механический и геометрический смысл.

а) Приращение аргумента и функции.

Пусть дана функция y=f(х), где х– значение аргумента из области определения функции. Если выбрать два значения аргумента х о и х из определенного интервала области определения функции, то разность между двумя значениями аргумента называется приращением аргумента: х - х о =∆х.

Значение аргумента x можно определить через x 0 и его приращение: х = х о + ∆х.

Разность между двумя значениями функции называется приращением функции: ∆y =∆f = f(х о +∆х) – f(х о).

Приращение аргументаи функции можно представить графически (рис.1). Приращение аргумента и приращение функции может быть как положительным, так и отрицательным. Как следует из рис.1 геометрически приращение аргумента ∆х изображается приращением абсциссы, а приращение функции ∆у – приращением ординаты. Вычисление приращения функции следует проводить в следующем порядке:

    даем аргументу приращение ∆х и получаем значение – x+Δx;

2) находим значение функции для значения аргумента (х+∆х) – f(х+∆х);

3) находим приращение функции ∆f=f(х + ∆х) - f(х).

Пример: Определить приращение функции y=х 2 , если аргумент изменился от х о =1 до х=3. Для точки х о значение функции f(х о)=х² о; для точки (х о +∆х) значение функции f(х о +∆х) = (х о +∆х) 2 = х² о +2х о ∆х+∆х 2 , откуда ∆f = f(х о +∆х)–f(х о) = (х о +∆х) 2 –х² о = х² о +2х о ∆х+∆х 2 –х² о = 2х о ∆х+∆х 2 ; ∆f = 2х о ∆х+∆х 2 ; ∆х = 3–1 = 2; ∆f =2·1·2+4 = 8.

б) Задачи, приводящие к понятию производной. Определение производной, ее физический смысл.

Понятие приращения аргумента и функции необходимы для введения понятия производной, которое исторически возникло исходя из необходимости определения скорости тех или иных процессов.

Рассмотрим, каким образом можно определить скорость прямолинейного движения. Пусть тело движется прямолинейно по закону: ∆Ѕ= ·∆t. Дляравномерного движения:= ∆Ѕ/∆t.

Для переменного движения значение ∆Ѕ/∆tопределяет значение ср. , т.е. ср. =∆Ѕ/∆t.Но средняя скорость не дает возможности отразить особенности движения тела и дать представление об истинной скорости в момент времени t. При уменьшении промежутка времени, т.е. при ∆t→0 средняя скоростьстремится к своему пределу – мгновенной скорости:

 мгн. =
 ср. =
∆Ѕ/∆t.

Таким же образом определяется и мгновенная скорость химической реакции:

 мгн. =
 ср. =
∆х/∆t,

где х – количество вещества, образовавшееся при химической реакции за время t. Подобные задачи по определению скорости различных процессов привели к введению в математике понятия производной функции.

Пусть дана непрерывная функция f(х),определенная на интервале ]а,в[иее приращение ∆f=f(х+∆х)–f(х).Отношение
является функцией ∆х и выражает среднюю скорость изменения функции.

Предел отношения , когда ∆х→0,при условии, что этот предел существует, называется производной функции:

y" x =

.

Производная обозначается:
– (игрек штрих по икс);f" (х) – (эф штрих по икс); y" – (игрек штрих); dy/dх(дэ игрек по дэ икс); - (игрек с точкой).

Исходя из определения производной, можно сказать, что мгновенная скорость прямолинейного движения есть производная от пути по времени:

 мгн. = S" t = f" (t).

Таким образом, можно сделать вывод, что производная функции по аргументу х есть мгновенная скорость изменения функции f(х):

у" x =f" (х)= мгн.

В этом и заключается физический смысл производной. Процесс нахождения производной называется дифференцированием, поэтому выражение «продифференцировать функцию» равносильно выражению «найти производную функции».

в) Геометрический смысл производной.

П
роизводная функции у = f(х)имеет простой геометрический смысл, связанный с понятием касательной к кривой линии в некоторой точкеM. При этом, касательную, т.е. прямую линию аналитически выражают в виде у = кх = tg· х, гдеугол наклона касательной (прямой) к оси Х. Представим непрерывную кривую как функцию у= f(х), возьмем на кривой точкуMи близкую к ней точку М 1 и приведем через них секущую. Ее угловой коэффициент к сек =tg β =.Если приближать точку М 1 к M, то приращение аргумента ∆х будет стремиться к нулю, а секущая при β=α займет положение касательной. Из рис.2 следует:tgα =
tgβ =
=у" x . Но tgαравен угловому коэффициенту касательной к графику функции:

к = tgα =
=у" x = f" (х). Итак, угловой коэффициент касательной к графику функции в данной точке равен значению ее производной в точке касания. В этом и состоит геометрический смысл производной.

г) Общее правило нахождения производной.

Исходя из определения производной, процесс дифференцирования функции можно представить следующим образом:

f(х+∆х) = f(х)+∆f;

    находят приращение функции: ∆f= f(х + ∆х) - f(х);

    составляют отношение приращения функции к приращению аргумента:

;

Пример: f(х)=х 2 ; f" (х)=?.

Однако, как видно даже из этого простого примера, применение указанной последовательности при взятии производных – процесс трудоемкий и сложный. Поэтому для различных функций вводятся общие формулы дифференцирования, которые представлены в виде таблицы «Основных формул дифференцирования функций».

Рассказать друзьям