"Освобождение от иррациональности в знаменателе дроби" (8 класс). Как освободиться от иррациональности в знаменателе? Способы, примеры, решения Избавление от иррациональности

💖 Нравится? Поделись с друзьями ссылкой

При преобразовании дробного алгебраического выражения, в знаменателе которого записано иррациональное выражение, обычно стремятся представить дробь так, чтобы ее знаменатель был рациональным. Если A,B,C,D,... - некоторые алгебраические выражения, то можно указать правила, с помощью которых можно освободиться от знаков радикала в знаменателе выражений вида

Во всех этих случаях освобождение от иррациональности производится умножением числителя и знаменателя дроби на множитель, выбранный так, чтобы его произведение на знаменатель дроби было рациональным.

1) Для освобождения от иррациональности в знаменателе дроби вида . В умножаем числитель и знаменатель на

Пример 1. .

2) В случае дробей вида . Умножаем числитель и знаменатель на иррациональный множитель

соответственно, т. е. на сопряженное иррациональное выражение.

Смысл последнего действия состоит в том, что в знаменателе произведение суммы на разность преобразуется в разность квадратов, которая уже будет рациональным выражением.

Пример 2. Освободиться от иррациональности в знаменателе выражения:

Решение, а) Умножаем числитель и знаменатель дроби на выражение . Получаем (при условии, что )

3) В случае выражений типа

знаменатель рассматривается как сумма (разность) и умножается на неполный квадрат разности (суммы), чтобы получить сумму (разность) кубов ((20.11), (20.12)). На тот же множитель умножается и числитель.

Пример 3. Освободиться от иррациональности в знаменателе выражений:

Решение, а) Рассматривая знаменатель данной дроби как сумму чисел и 1, умножим числитель и знаменатель на неполный квадрат разности этих чисел:

или окончательно:

В некоторых случаях требуется выполнить преобразование противоположного характера: освободить дробь от иррациональности в числителе. Оно проводится совершенно аналогично.

Пример 4. Освободиться от иррациональности в числителе дроби .

Преобразование выражений, содержащих арифметические квадратные корни

Цель урока: создание условий для формирования умений, упрощать выражения, содержащие арифметические квадратные корни в ходе работы в группах сменного состава.

Задачи урока: проверить теоретическую подготовку учащихся, умение извлекать квадратный корень из числа, формировать навыки правильного воспроизведения своих знаний и умений, развивать вычислительные навыки, воспитывать умение работать в парах и ответственности за общее дело.

Ход урока.

I . Организационный момент. « ТАБЛИЦА ГОТОВНОСТИ»

Фиксация уровня готовности к началу занятия.

25 карточек красного цвета (5 баллов), желтого цвета (4 балла), синего

цвета (3 балла).

Таблица готовности

5 баллов (хочу знать, делать, решать)

4 балла (я готов к работе)

3 балла (я не очень хорошо себя чувствую, я не понимаю материал, мне нужна помощь)

II . Индивидуальная работа по карточкам

Карточка 1

Вынести множитель из-под знака корня:

Карточка 2

Внести множитель под знак корня:

Карточка 3

Упростить:
а)
б)
в)

(Проверка после проверки домашнего задания)

III . Проверка домашнего задания.

№166, 167 устно фронтально

(самооценивание с помощью сигнальных карточек: зелёный - всё верно, красный – есть ошибка)

IV . Изучение нового материала. Работа в группах сменного состава.

Самостоятельно изучить материал, чтобы потом суметь объяснить его членам группы. Класс делится на 6 групп по 4 человека.

1, 2 и 3 группы – учащиеся со средними способностями

Как избавиться от иррациональности в знаменателе дроби? Рассмотрим общий случай и конкретные примеры.

Если число или выражение, стоящее под знаком квадратного корня в знаменателе, является одним из множителей, чтобы избавиться от иррациональности в знаменателе и числитель, и знаменатель дроби умножаем на квадратный корень из этого числа или выражения:

Примеры.

1) ;

2) .

4, 5 и 6 группы – учащиеся со способностями выше средних.

Если знаменатель дроби - сумма либо разность двух выражений, содержащих квадратный корень, чтобы избавиться от иррациональности в знаменателе умножаем и числитель, и знаменатель на сопряженный радикал:

Примеры. Освободиться от иррациональности в знаменателе дроби:

Работа в новых группах (4 группы по 6 человек, от каждой группы по 1 человеку).

Объяснение изученного материала членам новой группы. (взаимооценивание – прокомментировать объяснение материала учеником)

V . Проверка усвоения теоретического материала. На вопросы отвечают учащиеся, не объясняющие данную часть теоретического материала.

1) Как избавиться от иррациональности в знаменателе дроби, если число или выражение, стоящее под знаком квадратного корня в знаменателе, является одним из множителей?

2) Как избавиться от иррациональности в знаменателе дроби, если знаменатель дроби - сумма либо разность двух выражений, содержащих квадратный корень?

3) как избавиться от иррациональности в знаменателе дроби

4) Как избавиться от иррациональности в знаменателе дроби

VI . Закрепление изученного материала. Проверочная самостоятельная работа.

№81 («Алгебра» 8 класс, А.Абылкасымова, И.Бекбоев, А.Абдиев, З,Жумагулова)

№170 (1,2,3,5,6) («Алгебра» 8 класс, А.Шыныбеков)

Критерии оценивания:

Уровень А – № 81 примеры 1-5 отметка «3»

Уровень В – № 81 примеры 6-8 и №170 примеры 5,6 отметка «4»

Уровень С – № 170 примеры 1-6 отметка «5»

(самооценивание, проверка по образцу в флипчарте)

VII . Домашнее задание.

№ 218

VIII . Рефлексия. « Телеграмма»

Каждому предлагается заполнить бланк телеграммы, получив при этом следующую инструкцию: «Что вы думаете о прошедшем занятии? Что было для вас важным? Чему вы научились? Что вам понравилось? Что осталось неясным? В каком направлении нам стоит продвигаться дальше? Напишите мне, пожалуйста, об этом короткое послание –телеграмму из 11 слов. Я хочу узнать ваше мнение для того, чтобы учитывать его в дальнейшей работе».

Итог урока.

Выражения, преобразование выражений

Как освободиться от иррациональности в знаменателе? Способы, примеры, решения

В 8 классе на уроках алгебры в рамках темы преобразование иррациональных выражений заходит разговор про освобождение от иррациональности в знаменателе дроби . В этой статье мы разберем, что это за преобразование, рассмотрим, какие действия позволяют освободиться от иррациональности в знаменателе дроби, и приведем решения характерных примеров с детальными пояснениями.

Навигация по странице.

Что значит освободиться от иррациональности в знаменателе дроби?

Сначала нужно разобраться, что такое иррациональность в знаменателе и что значит освободиться от иррациональности в знаменателе дроби. В этом нам поможет информация из школьных учебников . Заслуживают внимания следующие моменты.

Когда запись дроби содержит в знаменателе знак корня (радикал), то говорят, что в знаменателе присутствует иррациональность . Вероятно, это связано с тем, что записанные при помощи знаков корней числа часто являются . В качестве примера приведем дроби , , , , очевидно, знаменатели каждой из них содержат знак корня, а значит и иррациональность. В старших классах неизбежна встреча с дробями, иррациональность в знаменатели которых вносят не только знаки квадратных корней, но и знаки кубических корней, корней четвертой степени и т.д. Вот примеры таких дробей: , .

Учитывая приведенную информацию и смысл слова «освободиться», очень естественно воспринимается следующее определение:

Определение.

Освобождение от иррациональности в знаменателе дроби – это преобразование, при котором дробь с иррациональностью в знаменателе заменяется тождественно равной дробью, не содержащей в знаменателе знаков корней.

Часто можно слышать, что говорят не освободиться, а избавиться от иррациональности в знаменателе дроби. Смысл при этом не меняется.

Например, если от дроби перейти к дроби , значение которой равно значению исходной дроби и знаменатель которой не содержит знака корня, то можно констатировать, что мы освободились от иррациональности в знаменателе дроби. Еще пример: замена дроби тождественно равной ей дробью есть освобождение от иррациональности в знаменателе дроби.

Итак, начальная информация получена. Остается узнать, что нужно делать, чтобы освободиться от иррациональности в знаменателе дроби.

Способы освобождения от иррациональности, примеры

Обычно для освобождения от иррациональности в знаменателе дроби используют два преобразования дроби : умножение числителя и знаменателя на отличное от нуля число или выражение и преобразование выражения в знаменателе. Ниже мы рассмотрим, как эти преобразования дробей используются в рамках основных способов, позволяющих избавиться от иррациональности в знаменателе дроби. Затронем следующие случаи.

В самых простых случаях достаточно преобразовать выражение в знаменателе. В качестве примера можно привести дробь, в знаменателе которой находится корень из девяти. В этом случае замена его значением 3 освобождает знаменатель от иррациональности.

В более сложных случаях приходится предварительно выполнять умножение числителя и знаменателя дроби на некоторое отличное от нуля число или выражение, что впоследствии позволяет преобразовать знаменатель дроби к виду, не содержащему знаков корней. Например, после умножения числителя и знаменателя дроби на , дробь принимает вид , а дальше выражение в знаменателе можно заменить выражением без знаков корней x+1 . Таким образом, после освобождения от иррациональности в знаменателе дробь принимает вид .

Если говорить про общий случай, то чтобы избавиться от иррациональности в знаменателе дроби, приходится прибегать к различным допустимым преобразованиям, иногда, довольно специфическим.

А теперь подробно.

Преобразование выражения в знаменателе дроби

Как уже было отмечено, один из способов избавления от иррациональности в знаменателе дроби состоит в преобразовании знаменателя. Рассмотрим решения примеров.

Пример.

Избавиться от иррациональности в знаменателе дроби .

Решение.

Раскрыв скобки в знаменателе, придем к выражению . Дальше позволяют перейти к дроби . Вычислив значения под знаками корней, имеем . Очевидно, в полученном выражении можно , что дает дробь , которая равна 1/16 . Так мы избавились от иррациональности в знаменателе.

Обычно решение записывают кратко без пояснения, так как выполняемые действия довольно просты:

Ответ:

.

Пример.

Решение.

Когда мы говорили про преобразование иррациональных выражений с использованием свойств корней , то отметили, что для любого выражения A при четных n (в нашем случае n=2 ) выражение можно заменить выражением |A| на всей ОДЗ переменных для исходного выражения. Поэтому, можно выполнить такое преобразование заданной дроби: , которое освобождает от иррациональности в знаменателе.

Ответ:

.

Умножение числителя и знаменателя на корень

Когда выражение в знаменателе дроби имеет вид , где выражение A не содержит знаков корней, то освободиться от иррациональности в знаменателе позволяет умножение числителя и знаменателя на . Это действие возможно, так как не обращается в нуль на ОДЗ переменных для исходного выражения. При этом в знаменателе получается выражение , которое легко преобразовать к виду без знаков корней: . Покажем применение этого подхода на примерах.

Пример.

Освободитесь от иррациональности в знаменателе дроби: а) , б) .

Решение.

а) Умножив числитель и знаменатель дроби на квадратный корень из трех, получим .

б) Чтобы избавиться от знака квадратного корня в знаменателе, умножим числитель и знаменатель дроби на , после чего проведем преобразования в знаменателе:

Ответ:

а) , б) .

В случае, когда в знаменателе находятся множители или , где m и n некоторые натуральные числа, числитель и знаменатель надо умножить на такой множитель, чтобы после этого выражение в знаменателе можно было преобразовать к виду или , где k – некоторое натуральное число, соответственно. Дальше легко перейти к дроби без иррациональности в знаменателе. Покажем применение описанного способа избавления от иррациональности в знаменателе на примерах.

Пример.

Освободиться от иррациональности в знаменателе дроби: а) , б) .

Решение.

а) Ближайшее натуральное число, превосходящее 3 и делящееся на 5 , есть 5 . Чтобы показатель шестерки стал равен пяти, выражение в знаменателе надо умножить на . Следовательно, освобождению от иррациональности в знаменателе дроби будет способствовать выражение , на которое надо умножить числитель и знаменатель:

б) Очевидно, что ближайшее натуральное число, которое превосходит 15 и при этом делится без остатка на 4 , это 16 . Чтобы получить показатель степени в знаменателе стал равен 16 , нужно умножить находящееся там выражение на . Таким образом, умножение числителя и знаменателя исходной дроби на (заметим, значение этого выражения не равно нулю при при каких действительных x ) позволит избавиться от иррациональности в знаменателе:

Ответ:

а) , б) .

Умножение на сопряженное выражение

Следующий способ освобождения от иррациональности в знаменателе дроби покрывает случаи, когда в знаменателе находятся выражения вида , , , , или . В этих случаях, чтобы освободиться от иррациональности в знаменателе дроби, надо числитель и знаменатель дроби умножить на так называемое сопряженное выражение .

Осталось узнать, какие выражения являются сопряженными для указанных выше. Для выражения сопряженным выражением является , а для выражения сопряженным является выражение . Аналогично, для выражения сопряженным является , а для выражения сопряженным является . И для выражения сопряженным является , а для выражения сопряженным является . Итак, выражение, сопряженное данному выражению, отличается от него знаком перед вторым слагаемым.

Давайте посмотрим, к чему приводит умножение выражения на сопряженное ему выражение. Для примера рассмотрим произведение . Его можно заменить разностью квадратов, то есть, , откуда дальше можно перейти к выражению a−b , которое не содержит знаков корней.

Теперь становится понятно, как умножение числителя и знаменателя дроби на выражение, сопряженное знаменателю, позволяет освободиться от иррациональности в знаменателе дроби. Рассмотрим решения характерных примеров.

Пример.

Представьте выражение в виде дроби, знаменатель которой не содержит радикала: а) , б) .

Решение.

а) Выражение, сопряженное знаменателю, это . Умножим на него числитель и знаменатель, что позволит нам освободиться от иррациональности в знаменателе дроби:

б) Для выражения сопряженным является . Умножая на него числитель и знаменатель, получаем

Можно было сначала вынести знак минус из знаменателя, а уже после этого умножать числитель и знаменатель на выражение, сопряженное знаменателю:

Ответ:

а) , б) .

Обратите внимание: при умножении числителя и знаменателя дроби на выражение с переменными, сопряженное знаменателю, нужно позаботиться, чтобы оно не обращалось в нуль ни при каком наборе значений переменных из ОДЗ для исходного выражения.

Пример.

Освободиться от иррациональности в знаменателе дроби .

Решение.

Для начала найдем область допустимых значений (ОДЗ) переменной x . Она определяется условиями x≥0 и , из которых заключаем, что ОДЗ есть множество x≥0 .

Выражение, сопряженное знаменателю, есть . Мы можем умножить на него числитель и знаменатель дроби при условии, что , которое на ОДЗ равносильно условию x≠16 . При этом имеем

А при x=16 имеем .

Таким образом, для всех значений переменной x из ОДЗ, кроме x=16 , , а при x=16 имеем .

Ответ:

Использование формул сумма кубов и разность кубов

Из предыдущего пункта мы узнали, что умножение числителя и знаменателя дроби на выражение, сопряженное знаменателю, проводится для того, чтобы в дальнейшем применить формулу разность квадратов и тем самым освободиться от иррациональности в знаменателе. В некоторых случаях для освобождения от иррациональности в знаменателе оказываются полезными и другие формулы сокращенного умножения . Например, формула разность кубов a 3 −b 3 =(a−b)·(a 2 +a·b+b 2) позволяет избавиться от иррациональности, когда в знаменателе дроби находятся выражения с кубическими корнями вида или , где A и B – некоторые числа или выражения. Для этого числитель и знаменатель дроби умножается на неполный квадрат суммы или на разность соответственно. Аналогично примеряется и формула сумма кубов a 3 +b 3 =(a+b)·(a 2 −a·b+b 2) .

Пример.

Освободитесь от иррациональности в знаменателе дроби: а) , б) .

Решение.

а) Несложно догадаться, что в данном случае освободиться от иррациональности в знаменателе позволяет умножение числителя и знаменателя на неполный квадрат суммы чисел и , так как в дальнейшем это позволит преобразовать выражение в знаменателе по формуле разность кубов:

б) Выражение в знаменателе дроби можно представить в виде , из которого хорошо видно, что это неполный квадрат разности чисел 2 и . Таким образом, если числитель и знаменатель дроби умножить на сумму , то знаменатель можно будет преобразовать по формуле сумма кубов, что позволит освободиться от иррациональности в знаменателе дроби. Это возможно сделать при условии , которое равносильно условию и дальше x≠−8 :

А при подстановке x=−8 в исходную дробь имеем .

Таким образом, для всех x из ОДЗ для исходной дроби (в данном случае это множество R ), кроме x=−8 , имеем , а при x=8 имеем .

Ответ:

Использование различных способов

В примерах посложнее обычно не получается в одно действие освободиться от иррациональности в знаменателе, а приходится последовательно применять метод за методом, в том числе и из разобранных выше. Иногда могут потребоваться и какие-нибудь нестандартные приемы решения. Довольно интересные задания по обсуждаемой теме можно найти в учебнике под авторством Колягина Ю. Н. Список литературы.

  1. Алгебра: учеб. для 8 кл. общеобразоват. учреждений / [Ю. Н. Макарычев, Н. Г. Миндюк, К. И. Нешков, С. Б. Суворова]; под ред. С. А. Теляковского. - 16-е изд. - М. : Просвещение, 2008. - 271 с. : ил. - ISBN 978-5-09-019243-9.
  2. Мордкович А. Г. Алгебра. 8 класс. В 2 ч. Ч. 1. Учебник для учащихся общеобразовательных учреждений / А. Г. Мордкович. - 11-е изд., стер. - М.: Мнемозина, 2009. - 215 с.: ил. ISBN 978-5-346-01155-2.
  3. Алгебра и начала математического анализа. 10 класс: учеб. для общеобразоват. учреждений: базовый и профил. уровни / [Ю. М. Колягин, М. В. Ткачева, Н. Е. Федорова, М. И. Шабунин]; под ред. А. Б. Жижченко. - 3-е изд. - М. : Просвещение, 2010.- 368 с. : ил.- ISBN 978-5-09-022771-1.

Токарев Кирилл

Работа помогает научиться извлекать квадратный корень из любого числа без применения калькулятора и таблицы квадратов и освобождать знаменатель дроби от иррациональности.

Освобождение от иррациональности знаменателя дроби

Суть метода состоит в умножении и делении дроби на такое выражение, которое позволит исключить иррациональность (квадратные и кубические корни) из знаменателя и сделает его проще. После этого дроби проще привести к общему знаменателю и окончательно упростить исходное выражение.

Извлечение квадратного корня с приближением до заданного разряда.

Пусть нужно извлечь квадратный корень из натурального числа 17358122, причем известно, что корень извлекается. Чтобы найти результат, иногда удобно воспользоваться описанным в работе правилом.

Скачать:

Предварительный просмотр:

Чтобы пользоваться предварительным просмотром создайте себе аккаунт (учетную запись) Google и войдите в него: https://accounts.google.com

Предварительный просмотр:

Чтобы пользоваться предварительным просмотром презентаций создайте себе аккаунт (учетную запись) Google и войдите в него: https://accounts.google.com


Подписи к слайдам:

Радикал. Освобождение от иррациональности знаменателя дроби. Извлечение квадратного корня с заданной степенью точности. Ученика 9Б класса МОУ СОШ №7 г. Сальска Токарева Кирилла

ОСНОВОПОЛАГАЮЩИЙ ВОПРОС: Можно ли извлечь квадратный корень из любого числа с заданной степенью точности, не имея калькулятора и таблицы квадратов?

ЦЕЛИ И ЗАДАЧИ: Рассмотреть случаи решения выражений с радикалами, не изучаемые в школьном курсе математики, но необходимые на ЕГЭ.

ИСТОРИЯ КОРНЯ Знак корня происходит из строчной латинской буквы r (начальной в латинском слове radix – корень), сросшейся с надстрочной чертой. В старину надчёркивание выражения использовалось вместо нынешнего заключения в скобки, так что есть всего лишь видоизменённый древний способ записи чего-то вроде. Впервые такое обозначение использовал немецкий математик Томас Рудольф в 1525 году.

ОСВОБОЖДЕНИЕ ОТ ИРРАЦИОНАЛЬНОСТИ ЗНАМЕНАТЕЛЯ ДРОБИ Суть метода состоит в умножении и делении дроби на такое выражение, которое позволит исключить иррациональность (квадратные и кубические корни) из знаменателя и сделает его проще. После этого дроби проще привести к общему знаменателю и окончательно упростить исходное выражение. АЛГОРИТМ ОСВОБОЖДЕНИЯ ОТ ИРРАЦИОНАЛЬНОСТИ В ЗНАМЕНАТЕЛЕ ДРОБИ: 1. Разложить знаменатель дроби на множители. 2. Если знаменатель имеет вид или содержит множитель, то числитель и знаменатель следует умножить на. Если знаменатель имеет вид или или содержит множитель такого вида, то числитель и знаменатель дроби следует умножить соответственно на или на. Числа и называют сопряжёнными. 3. Преобразовать числитель и знаменатель дроби, если возможно, то сократить полученную дробь.

а) б) в) г) = - Освобождение от иррациональности в знаменателе дроби.

ИЗВЛЕЧЕНИЕ КВАДРАТНОГО КОРНЯ С ПРИБЛИЖЕНИЕМ ДО ЗАДАННОГО РАЗРЯДА. 1) -1 100 96 400 281 11900 11296 24 4 281 1 2824 4 16 135 81 5481 4956 52522 49956 81 1 826 6 8326 6 2) Древневавилонский способ: Пример: Найти. Для решения задачи данное число разлагается на сумму двух слагаемых: 1700 = 1600 + 100 = 40 2 + 100, первое из которых является полным квадратом. Затем применяем формулу. Алгебраический способ:

ИЗВЛЕЧЕНИЕ КВАДРАТНОГО КОРНЯ С ПРИБЛИЖЕНИЕМ ДО ЗАДАННОГО РАЗРЯДА. , 4 16 8 . 1 1 1 3 5 1 8 1 5 4 8 1 8 2 + 66 4 9 5 6 6 5 2 5 2 2 + 8 3 2 66 4 9 9 5 6 6 + 8 3 3 2 33 2 5 6 6 0 0 ,3

Список литературы 1. Сборник задач по математике для поступающих в вузы под редакцией М.И.Сканави. В. К.Егерев, Б.А.Кордемский, В. В. Зайцев, “ ОНИКС 21 век ” , 2003г. 2. Алгебра и элементарные функции. Р. А. Калнин, “ Наука ” , 1973г. 3. Математика. Справочные материалы. В. А. Гусев, А. Г. Мордкович, издательство “ Просвещение ” , 1990г. 4. Школьникам о математике и математиках. Составитель М.М.Лиман, Просвещение, 1981г.

В данной теме мы рассмотрим все три перечисленные выше группы пределов с иррациональностями. Начнём с пределов, содержащих неопределенность вида $\frac{0}{0}$.

Раскрытие неопределенности $\frac{0}{0}$.

Схема решения стандартных примеров такого типа обычно состоит из двух шагов:

  • Избавляемся от иррациональности, вызвавшей неопределенность, домножая на так называемое "сопряжённое" выражение;
  • При необходимости раскладываем выражение в числителе или знаменателе (или и там и там) на множители;
  • Сокращаем множители, приводящие к неопределённости, и вычисляем искомое значение предела.

Термин "сопряжённое выражение", использованный выше, будет детально пояснён в примерах. Пока что останавливаться на нём подробно нет резона. Вообще, можно пойти иным путём, без использования сопряжённого выражения. Иногда от иррациональности может избавить удачно подобранная замена. Такие примеры редки в стандартных контрольных работах, поэтому на использование замены рассмотрим лишь один пример №6 (см. вторую часть данной темы).

Нам понадобится несколько формул, которые я запишу ниже:

\begin{equation} a^2-b^2=(a-b)\cdot(a+b) \end{equation} \begin{equation} a^3-b^3=(a-b)\cdot(a^2+ab+b^2) \end{equation} \begin{equation} a^3+b^3=(a+b)\cdot(a^2-ab+b^2) \end{equation} \begin{equation} a^4-b^4=(a-b)\cdot(a^3+a^2 b+ab^2+b^3)\end{equation}

Кроме того, предполагаем, что читатель знает формулы для решения квадратных уравнений. Если $x_1$ и $x_2$ - корни квадратного трёхчлена $ax^2+bx+c$, то разложить его на множители можно по следующей формуле:

\begin{equation} ax^2+bx+c=a\cdot(x-x_1)\cdot(x-x_2) \end{equation}

Формул (1)-(5) вполне хватит для решения стандартных задач, к которым мы сейчас и перейдём.

Пример №1

Найти $\lim_{x\to 3}\frac{\sqrt{7-x}-2}{x-3}$.

Так как $\lim_{x\to 3}(\sqrt{7-x}-2)=\sqrt{7-3}-2=\sqrt{4}-2=0$ и $\lim_{x\to 3} (x-3)=3-3=0$, то в заданном пределе мы имеем неопределённость вида $\frac{0}{0}$. Раскрыть эту неопределённость нам мешает разность $\sqrt{7-x}-2$. Для того, чтобы избавляться от подобных иррациональностей, применяют умножение на так называемое "сопряжённое выражение". Как действует такое умножение мы сейчас и рассмотрим. Умножим $\sqrt{7-x}-2$ на $\sqrt{7-x}+2$:

$$(\sqrt{7-x}-2)(\sqrt{7-x}+2)$$

Чтобы раскрыть скобки применим , подставив в правую часть упомянутой формулы $a=\sqrt{7-x}$, $b=2$:

$$(\sqrt{7-x}-2)(\sqrt{7-x}+2)=(\sqrt{7-x})^2-2^2=7-x-4=3-x.$$

Как видите, если умножить числитель на $\sqrt{7-x}+2$, то корень (т.е. иррациональность) в числителе исчезнет. Вот это выражение $\sqrt{7-x}+2$ и будет сопряжённым к выражению $\sqrt{7-x}-2$. Однако мы не вправе просто взять и умножить числитель на $\sqrt{7-x}+2$, ибо это изменит дробь $\frac{\sqrt{7-x}-2}{x-3}$, стоящую под пределом. Умножать нужно одовременно и числитель и знаменатель:

$$ \lim_{x\to 3}\frac{\sqrt{7-x}-2}{x-3}= \left|\frac{0}{0}\right|=\lim_{x\to 3}\frac{(\sqrt{7-x}-2)\cdot(\sqrt{7-x}+2)}{(x-3)\cdot(\sqrt{7-x}+2)}$$

Теперь вспомним, что $(\sqrt{7-x}-2)(\sqrt{7-x}+2)=3-x$ и раскроем скобки. А после раскрытия скобок и небольшого преобразования $3-x=-(x-3)$ сократим дробь на $x-3$:

$$ \lim_{x\to 3}\frac{(\sqrt{7-x}-2)\cdot(\sqrt{7-x}+2)}{(x-3)\cdot(\sqrt{7-x}+2)}= \lim_{x\to 3}\frac{3-x}{(x-3)\cdot(\sqrt{7-x}+2)}=\\ =\lim_{x\to 3}\frac{-(x-3)}{(x-3)\cdot(\sqrt{7-x}+2)}= \lim_{x\to 3}\frac{-1}{\sqrt{7-x}+2} $$

Неопределенность $\frac{0}{0}$ исчезла. Сейчас можно легко получить ответ данного примера:

$$ \lim_{x\to 3}\frac{-1}{\sqrt{7-x}+2}=\frac{-1}{\sqrt{7-3}+2}=-\frac{1}{\sqrt{4}+2}=-\frac{1}{4}.$$

Замечу, что сопряжённое выражение может менять свою структуру - в зависимости от того, какую именно иррациональность оно должно убрать. В примерах №4 и №5 (см. вторую часть данной темы) будет использован иной вид сопряжённого выражения.

Ответ : $\lim_{x\to 3}\frac{\sqrt{7-x}-2}{x-3}=-\frac{1}{4}$.

Пример №2

Найти $\lim_{x\to 2}\frac{3x^2-5x-2}{\sqrt{x^2+5}-\sqrt{7x^2-19}}$.

Так как $\lim_{x\to 2}(\sqrt{x^2+5}-\sqrt{7x^2-19})=\sqrt{2^2+5}-\sqrt{7\cdot 2^2-19}=3-3=0$ и $\lim_{x\to 2}(3x^2-5x-2)=3\cdot2^2-5\cdot 2-2=0$, то мы имеем дело с неопределённостью вида $\frac{0}{0}$. Избавимся от иррациональности в знаменателе данной дроби. Для этого доможим и числитель и знаменатель дроби $\frac{3x^2-5x-2}{\sqrt{x^2+5}-\sqrt{7x^2-19}}$ на выражение $\sqrt{x^2+5}+\sqrt{7x^2-19}$, сопряжённое к знаменателю:

$$ \lim_{x\to 2}\frac{3x^2-5x-2}{\sqrt{x^2+5}-\sqrt{7x^2-19}}=\left|\frac{0}{0}\right|= \lim_{x\to 2}\frac{(3x^2-5x-2)(\sqrt{x^2+5}+\sqrt{7x^2-19})}{(\sqrt{x^2+5}-\sqrt{7x^2-19})(\sqrt{x^2+5}+\sqrt{7x^2-19})} $$

Вновь, как и в примере №1, нужно использовать для раскрытия скобок. Подставив в правую часть упомянутой формулы $a=\sqrt{x^2+5}$, $b=\sqrt{7x^2-19}$, получим такое выражение для знаменателя:

$$ \left(\sqrt{x^2+5}-\sqrt{7x^2-19}\right)\left(\sqrt{x^2+5}+\sqrt{7x^2-19}\right)=\\ =\left(\sqrt{x^2+5}\right)^2-\left(\sqrt{7x^2-19}\right)^2=x^2+5-(7x^2-19)=-6x^2+24=-6\cdot(x^2-4) $$

Вернёмся к нашему пределу:

$$ \lim_{x\to 2}\frac{(3x^2-5x-2)(\sqrt{x^2+5}+\sqrt{7x^2-19})}{(\sqrt{x^2+5}-\sqrt{7x^2-19})(\sqrt{x^2+5}+\sqrt{7x^2-19})}= \lim_{x\to 2}\frac{(3x^2-5x-2)(\sqrt{x^2+5}+\sqrt{7x^2-19})}{-6\cdot(x^2-4)}=\\ =-\frac{1}{6}\cdot \lim_{x\to 2}\frac{(3x^2-5x-2)(\sqrt{x^2+5}+\sqrt{7x^2-19})}{x^2-4} $$

В примере №1 практически сразу после домножения на сопряжённое выражение произошло сокращение дроби. Здесь перед сокращением придётся разложить на множители выражения $3x^2-5x-2$ и $x^2-4$, а уж потом перейти к сокращению. Чтобы разложить на множители выражение $3x^2-5x-2$ нужно использовать . Для начала решим квадратное уравнение $3x^2-5x-2=0$:

$$ 3x^2-5x-2=0\\ \begin{aligned} & D=(-5)^2-4\cdot3\cdot(-2)=25+24=49;\\ & x_1=\frac{-(-5)-\sqrt{49}}{2\cdot3}=\frac{5-7}{6}=-\frac{2}{6}=-\frac{1}{3};\\ & x_2=\frac{-(-5)+\sqrt{49}}{2\cdot3}=\frac{5+7}{6}=\frac{12}{6}=2. \end{aligned} $$

Подставляя $x_1=-\frac{1}{3}$, $x_2=2$ в , будем иметь:

$$ 3x^2-5x-2=3\cdot\left(x-\left(-\frac{1}{3}\right)\right)(x-2)=3\cdot\left(x+\frac{1}{3}\right)(x-2)=\left(3\cdot x+3\cdot\frac{1}{3}\right)(x-2) =(3x+1)(x-2). $$

Теперь настал черёд разложить на множители выражение $x^2-4$. Воспользуемся , подставив в неё $a=x$, $b=2$:

$$ x^2-4=x^2-2^2=(x-2)(x+2) $$

Используем полученные результаты. Так как $x^2-4=(x-2)(x+2)$ и $3x^2-5x-2=(3x+1)(x-2)$, то:

$$ -\frac{1}{6}\cdot \lim_{x\to 2}\frac{(3x^2-5x-2)(\sqrt{x^2+5}+\sqrt{7x^2-19})}{x^2-4} =-\frac{1}{6}\cdot \lim_{x\to 2}\frac{(3x+1)(x-2)(\sqrt{x^2+5}+\sqrt{7x^2-19})}{(x-2)(x+2)} $$

Сокращая на скобку $x-2$ получим:

$$ -\frac{1}{6}\cdot \lim_{x\to 2}\frac{(3x+1)(x-2)(\sqrt{x^2+5}+\sqrt{7x^2-19})}{(x-2)(x+2)} =-\frac{1}{6}\cdot \lim_{x\to 2}\frac{(3x+1)(\sqrt{x^2+5}+\sqrt{7x^2-19})}{x+2}. $$

Всё! Неопределённость исчезла. Ещё один шаг и мы приходим к ответу:

$$ -\frac{1}{6}\cdot \lim_{x\to 2}\frac{(3x+1)(\sqrt{x^2+5}+\sqrt{7x^2-19})}{x+2}=\\ =-\frac{1}{6}\cdot\frac{(3\cdot 2+1)(\sqrt{2^2+5}+\sqrt{7\cdot 2^2-19})}{2+2}= -\frac{1}{6}\cdot\frac{7(3+3)}{4}=-\frac{7}{4}. $$

Ответ : $\lim_{x\to 2}\frac{3x^2-5x-2}{\sqrt{x^2+5}-\sqrt{7x^2-19}}=-\frac{7}{4}$.

В следующем примере рассмотрим случай, когда иррациональности будут присутствовать как в числителе, так и в знаменателе дроби.

Пример №3

Найти $\lim_{x\to 5}\frac{\sqrt{x+4}-\sqrt{x^2-16}}{\sqrt{x^2-3x+6}-\sqrt{5x-9}}$.

Так как $\lim_{x\to 5}(\sqrt{x+4}-\sqrt{x^2-16})=\sqrt{9}-\sqrt{9}=0$ и $\lim_{x\to 5}(\sqrt{x^2-3x+6}-\sqrt{5x-9})=\sqrt{16}-\sqrt{16}=0$, то мы имеем неопределённость вида $\frac{0}{0}$. Так как в данном случае корни наличествуют и в знаменателе, и в числителе, то дабы избавиться от неопределённости придется домножать сразу на две скобки. Во-первых, на выражение $\sqrt{x+4}+\sqrt{x^2-16}$, сопряжённое числителю. А во-вторых на выражение $\sqrt{x^2-3x+6}-\sqrt{5x-9}$, сопряжённое знаменателю.

$$ \lim_{x\to 5}\frac{\sqrt{x+4}-\sqrt{x^2-16}}{\sqrt{x^2-3x+6}-\sqrt{5x-9}}=\left|\frac{0}{0}\right|=\\ =\lim_{x\to 5}\frac{(\sqrt{x+4}-\sqrt{x^2-16})(\sqrt{x+4}+\sqrt{x^2-16})(\sqrt{x^2-3x+6}+\sqrt{5x-9})}{(\sqrt{x^2-3x+6}-\sqrt{5x-9})(\sqrt{x^2-3x+6}+\sqrt{5x-9})(\sqrt{x+4}+\sqrt{x^2-16})} $$ $$ -x^2+x+20=0;\\ \begin{aligned} & D=1^2-4\cdot(-1)\cdot 20=81;\\ & x_1=\frac{-1-\sqrt{81}}{-2}=\frac{-10}{-2}=5;\\ & x_2=\frac{-1+\sqrt{81}}{-2}=\frac{8}{-2}=-4. \end{aligned} \\ -x^2+x+20=-1\cdot(x-5)(x-(-4))=-(x-5)(x+4). $$

Для выражения $x^2-8x+15$ получим:

$$ x^2-8x+15=0;\\ \begin{aligned} & D=(-8)^2-4\cdot 1\cdot 15=4;\\ & x_1=\frac{-(-8)-\sqrt{4}}{2}=\frac{6}{2}=3;\\ & x_2=\frac{-(-8)+\sqrt{4}}{2}=\frac{10}{2}=5. \end{aligned}\\ x^2+8x+15=1\cdot(x-3)(x-5)=(x-3)(x-5). $$

Подставляя полученные разожения $-x^2+x+20=-(x-5)(x+4)$ и $x^2+8x+15=(x-3)(x-5)$ в рассматриваемый предел, будем иметь:

$$ \lim_{x\to 5}\frac{(-x^2+x+20)(\sqrt{x^2-3x+6}+\sqrt{5x-9})}{(x^2-8x+15)(\sqrt{x+4}+\sqrt{x^2-16})}= \lim_{x\to 5}\frac{-(x-5)(x+4)(\sqrt{x^2-3x+6}+\sqrt{5x-9})}{(x-3)(x-5)(\sqrt{x+4}+\sqrt{x^2-16})}=\\ =\lim_{x\to 5}\frac{-(x+4)(\sqrt{x^2-3x+6}+\sqrt{5x-9})}{(x-3)(\sqrt{x+4}+\sqrt{x^2-16})}= \frac{-(5+4)(\sqrt{5^2-3\cdot 5+6}+\sqrt{5\cdot 5-9})}{(5-3)(\sqrt{5+4}+\sqrt{5^2-16})}=-6. $$

Ответ : $\lim_{x\to 5}\frac{\sqrt{x+4}-\sqrt{x^2-16}}{\sqrt{x^2-3x+6}-\sqrt{5x-9}}=-6$.

В следующей (второй) части рассмотрим ещё пару примеров, в которых сопряжённое выражение будет иметь иной вид, нежели в предыдущих задачах. Главное, помните, что цель использования сопряжённого выражения - избавиться от иррациональности, вызывающей неопределённость.

Рассказать друзьям